
Declarative Goal Mediation in Smart Environments
Giuseppe Bisicchia, Stefano Forti, Antonio Brogi

Department of Computer Science, University of Pisa, Pisa, Italy

Abstract—Smart environments enabled by the Internet of
Things aim at improving our daily lives by automatically
tuning ambient parameters and by achieving energy savings
through self-managing cyber-physical systems. Commercial so-
lutions, however, only permit setting simple target goals on
those parameters and do not mediate between conflicting goals
among different users and/or system administrators, nor across
different IoT verticals. In this article, we propose a declarative
approach (and its open-source Prolog prototype) to represent
smart environments, user-set goals and customisable mediation
policies to reconcile contrasting goals across multiple IoT systems.

Index Terms—Goal-oriented systems, Smart Environments,
Internet of Things, Logic Programming

I. INTRODUCTION

The Internet of Things is continuously growing and becoming
an integrated part of our daily lives with a plethora of new
different applications (e.g. wearables, home appliances) [1],
that show even capable of affecting our mood [2]. Among
the new verticals the IoT is enabling, smart environments
are getting increasing attention from the market and the
research community [3]. Indeed, they empower self-managing
ambients, based on data from IoT sensors and triggering
reactions enabled by IoT actuators. Besides their high potential
to improve people’s routines, these applications also lead to a
more sustainable energy and resource management [4]–[6].

Reconciling contrasting goals among different users in a
smart environment represent a challenging problem [7]–[9].
Indeed, people sharing a room in a building can possibly
express very different desiderata on the temperature and on the
light intensity they prefer, also depending on the activity they
are currently carrying on. To this end, many techniques have
been proposed to reconcile such contrasting goals, e.g. via
fuzzy logic [10], multi-agent systems [11], [12] or neural net-
works [13]. However, most commercial solutions, e.g. IFTTT
or Amazon Alexa, only allow setting simple goals and do not
mediate between contrasting objectives [14].

Factually, two different types of conflict can arise among
local and global goals: different users can set different goals
(e.g. on target temperature), and the System Administrators
can set global objectives that must be met (e.g. on maximum
energy consumption, on law constraints), which may conflict
with the user-set goals. Even after reconciling the previous
types of conflicts, a final configuration of the actuators in-
volved must also be determined. Indeed, given a final target

Work partly supported by projects: GIÒ funded by the Department of
Computer Science of the University of Pisa, Italy; LiSCIo (F4Fp-08-M30)
funded by Fed4Fire+; CONTWARE funded by the Conference of Italian
University Rectors; and by the Orio Carlini Scholarship Programme 2020
funded by the GARR Consortium.

state, we need to determine the correct configuration for each
actuator acting on that state and possibly mediate between
any conflicting configurations that a single actuator possibly
receives.

In this article, we propose a declarative methodology to
specify customisable mediation policies for reconciling con-
trasting goals and actuator settings in smart environments. The
novel contribution mainly consists of a declarative framework
to specify mediation policies for reconciling contrasting (user
and/or global) goals and actuator settings in smart environ-
ments, and a Prolog prototype implementation, Solomon. The
prototype, provisioned as a service, tames the effects of the
aforementioned types of conflicts by allowing to flexibly
specify ad-hoc mediation policies for distinct zones of a
smart-environment and possible conflicting settings of target
actuators. Such policies can resolve conflicts among users’
goals, among users’ and system administrator’s goals, and
on actuators configuration. Last, but not least, the declarative
nature of Solomon makes it easy to write, maintain and extend
arbitrary mediation policies across multiple IoT verticals.

II. METHODOLOGY AND PROTOTYPE

In this section, we briefly illustrate Solomon, by describing
its overall functioning and its open-source Prolog implemen-
tation1. More details on the methodology and prototype, with
examples of usage, can be found in [15].
A. Overview

Fig. 1 gives a bird’s-eye view of the architecture of Solomon,
which can be deployed to feature the autonomic mediation of
goals in smart environments. Solomon interacts with a smart
environment, consisting of IoT sensors and actuators (or the
services they are wrapped in). Indeed, Solomon periodically
receives updated data from the sensors deployed in the smart
environment, depending on which it can trigger suitable ac-
tions for the available actuators.

Both users and system administrators interact with
Solomon, through the Logic-Programming-as-a-Service
(LPaaS) API [16] or through available UIs. On one hand,
users can declare goals on the target state they wish to
experience while being in the smart environment. On the
other hand, system administrators can declare global mediation
policies to solve user-user conflicts, to set global goals and
solve possible user-admin conflicts, and to determine actuator
configurations useful to reach a target state for the smart
environment, after goal mediation. Being provisioned as a
service, Solomon features (i) easy integration with other

1Freely available at: https://github.com/di-unipi-socc/Solomon

Fig. 1. Bird’s-eye view of Solomon.

pieces of software such as user interfaces (UIs) or mobile
applications and (ii) deployability to either Cloud or Edge
servers, depending on its usage context.

B. Model

Smart Environment. To model smart environments, we first
build up a dictionary of all types of environmental parameters
we can monitor (via sensors) and/or act upon (via actuators).
We call property types the elements in such a dictionary, and
declare them as in
propertyType(TypeId).

where TypeId is a literal value denoting an unique property
type identifier. Given a propertyType we can then define
actuators and sensors that sense or operate on that. Actuators
are declared as in
actuator(ActuatorId, TypeId).

where ActuatorId is the unique actuator identifier and TypeId

the associated property type. Sensors are declared as in
sensor(SensorId, TypeId).

where SensorId is the unique sensor identifier and TypeId is
the associated property type. Environmental values monitored
by each sensor are denoted by
sensorValue(SensorId, Value).

where SensorId identifies the sensor and Value is the last value
it read. System administrators can divide smart environments
into different zones, which allow distinguishing which global
policy to apply to specific sets of sensors and actuators:
zone(ZoneId, MediationPolicy).

where ZoneId is the unique zone identifier and
MediationPolicy is the unique identifier of the global
management policy the zone is subject to. A zone groups one
ore more property instances, defining a set of actuators and
a set of sensors that operate on a specific property type. A
property instance is declared as in
propertyInstance(ZId, PIId, TypeId, Actuators, Sensors).

where ZId identifies the zone to which the instance be-
longs, PIId is the property instance identifier, TypeId is the
propertyType of PIId, Actuators is a list of actuators that
operate on the property and Sensors is a list of sensors that
monitor it within the zone. All actuators and sensors in a
given property instance must have the same property type.

The identifier of a property instance is unique only within the
zone, allowing for distinct zones to have instances with the
same identifier.
Users and Goals. A user is declared as in
user(UserId, AllowedZones).

where UserId is the unique user identifier and AllowedZones

is the list of the zones on which the user can set goals. User
goals are declared as in
set(UId, ZId, PIId, Value).

where UId is the user identifier, ZId identifies a zone, PIId is
one of the property instances of the zone, and Value is the
goal expressed by the user on the property instance.

C. Reasoner
The model described up to now denotes the inputs that
Solomon receives from the smart environment it manages as
well as from its users. Fig. 2 lists the kernel of Solomon,
which works in three main steps that constitute the top-down
methodology of the proposed framework to determine a target
state for a smart environment. Those steps are as:

1) it collects all user requests2 that are currently submitted
to the system (getRequests/2, line 2) and extracts only
those that are valid,

2) it mediates requests referring to the same property
instance by applying the mediation policies specified by
the system administrator, so to determine a target state
for each property instance (mediateRequests/2, line 2)
by solving all user-user and user-admin conflicts,

3) it finally determines actions (i.e. settings) for individual
IoT actuators so to achieve the target state, by also
resolving possible conflicting actions found for a single
actuator (associateActions/2, line 3).

Overall, the react/3 predicate (line 1) returns three lists: the
list of all Requests, the list of MediatedRequests containing the
target states for each property instance and the list of Actions

to perform to reach a final target state. It is worth noting
that, while the framework leaves complete flexibility to the
system administrators in defining their own mediation policies,
it also checks that inputs and outputs of each phase are
well-formed (through predicates validMediation/1, line 2, and
validActions/1, line 3). This guides the system administrators
in their task of specifying valid mediation policies.
Collecting Requests. First, Solomon collects all the requests
through getRequests/2 (line 2, lines 4–8), which determines
two lists of tuples (ZId, PIId, Value, UId), where each tuple
corresponds to a set(UId, ZId, PIId, Value) with arguments
rearranged for easier handling in later stages. The first list
Requests contains all current requests from users (line 5). The
second one, ValidRequests, only contains valid requests (line
6–8), i.e. by default3, requests for which the zone and the

2findall(Template, Goal, Result) finds all succesful solutions of Goal
and collects the corresponding instantiations of Template in the list Result.
If Goal has no solutions then Result is instantiated to the empty list.

3System administrators can easily extend the concept of valid request by
including further checks based on domain-specific knowledge, e.g. on the
range of allowed values for a given property. This can be done by extending
the validRequest/3 predicate exploited by getRequests/2 (line 7).

1 react(Requests, MediatedRequests, Actions) :-
2 getRequests(Requests, ValidRequests), mediateRequests(ValidRequests, MediatedRequests), validMediation(MediatedRequests),
3 associateActions(MediatedRequests, Actions), validActions(Actions).

4 getRequests(Requests, ValidRequests) :-
5 findall((ZId, PIId, Value, UId), set(UId, ZId, PIId, Value), Requests),
6 findall((ZId, PIId, Value, UId),
7 (member((ZId, PIId, Value, UId), Requests), user(UId, Zones), member(ZId ,Zones), validRequest(ZId, PIId, Value)),
8 ValidRequests).

9 validMediation(Reqs) :-
10 sort(Reqs, OrderedReqs), \+((member((Z,PI,V1), OrderedReqs), member((Z,PI,V2), OrderedReqs), dif(V1,V2))),
11 \+((member((Z,PI,V), OrderedReqs), \+(validRequest(Z,PI,V)))).

12 validActions(Actions) :-
13 sort(Actions, OrderedActions), \+((member((A,V1), OrderedActions), member((A,V2), OrderedActions), dif(V1,V2))),
14 \+((member((A,V), OrderedActions), \+(validValue(A,V)))).

Fig. 2. Solomon code.

property instance exist, and the zone is among those the user
associated with the request can set goals on.
Mediating Requests. Valid requests are then passed to the
mediateRequest/3 predicate (line 2) which can be flexibly and
freely specified by the system administrator. The objective
of this phase is to mediate between the possible conflicting
goals of the users by determining one target value for each
property instance. The mediateRequests/2 predicate outputs
a list MediatedRequests of such values for each property
instance, in the form of triples (ZoneId, PropertyInstanceId,

Value). Then, the validMediation/1 predicate (lines 2, 9–11)
checks that the list contains no duplicates (line 10) and that
all requests are still valid after mediation (line 11).
Determining Actions. After obtaining a target state for each
property instance, Solomon generates a list of actions for avail-
able actuators to reach such target. An action is a pair (AId,

Value) where AId is the identifier of an actuator and Value

is the value it need to be set to. The associatedActions/2

predicate (line 3) inputs a list of mediated requests and returns
a list of actions, according to Administrator policies. The
validActions/1 predicate (lines 3, 12–14) checks whether
there are no duplicate settings (line 13) and that obtained
values are valid according to Administrator policies (line 14),
which can check if the configuration for an actuator can
factually be implemented, using validValue/1.

III. CONCLUDING REMARKS

This article proposed a declarative approach – and its open-
source Prolog prototype Solomon, provisioned as a service
– to specify policies for mediating contrasting (user and/or
global) goals and actuator settings in smart environments. The
prototype can resolve user-user and user-admin conflicts into
a target state for the smart environment and its actuators.

In our future work, we intend to: (i) implement and test
other mediation policies (e.g. based on fuzzy logic, learning
or heuristics), (ii) embed a geo-localisation system for users
to predict their movements so to reduce manual interactions,
and (iii) make Solomon interoperable with Web of Things4 to

4Web of Things, https://www.w3.org/WoT/

exploit it in actual smart environments.

REFERENCES

[1] Y. Perwej, M. A. AbouGhaly, B. Kerim, and H. A. M. Harb, “An ex-
tended review on internet of things (iot) and its promising applications,”
CAE, pp. 2394–4714, 2019.

[2] A. Gyrard and A. Sheth, “IAMHAPPY: Towards an IoT knowledge-
based cross-domain well-being recommendation system for everyday
happiness,” Smart Health, vol. 15, p. 100083, 2020.

[3] A. K. Sikder, L. Babun, Z. B. Celik, A. Acar, H. Aksu, P. McDaniel,
E. Kirda, and A. S. Uluagac, “Kratos: Multi-User Multi-Device-Aware
Access Control System for the Smart Home,” WiSec ’20, p. 112, 2020.

[4] S. Merabti, B. Draoui, and F. Bounaama, “A review of control systems
for energy and comfort management in buildings,” in ICMIC, pp. 478–
486, 2016.

[5] E. Torunski, R. Othman, M. Orozco, and A. E. Saddik, “A review of
smart environments for energy savings,” ANT/MobiWIS, vol. 10, pp. 205
– 214, 2012.

[6] S. Forti, A. Pagiaro, and A. Brogi, “Simulating fogdirector application
management,” Simul. Model. Pract. Theory, vol. 101, p. 102021, 2020.

[7] J. Palanca, E. Del Val, A. Garcia-Fornes, H. Billhardt, J. M. Corchado,
and V. Julián, “Designing a goal-oriented smart-home environment,” Inf.
Syst. Frontiers, vol. 20, no. 1, pp. 125–142, 2018.

[8] A. Jantsch et al., “Hierarchical dynamic goal management for IoT
systems,” in ISQED, pp. 370–375, 2018.

[9] H. Sfar, B. Raddaoui, and A. Bouzeghoub, “Reasoning Under Conflicts
in Smart Environment,” in ICONIP (3), pp. 924–934, 2017.

[10] A. Patel and T. A. Champaneria, “Fuzzy logic based algorithm for
Context Awareness in IoT for Smart home environment,” in TENCON,
pp. 1057–1060, 2016.

[11] P. Davidsson and M. Boman, “Saving Energy and Providing Value
Added Services in Intelligent Buildings: A MAS Approach,” in ASA/MA,
pp. 166–177, 2000.

[12] D. Booy, K. Liu, B. Qiao, and C. Guy, “A Semiotic Multi-Agent System
for Intelligent Building Control,” AMBI-SYS, 2008.

[13] R. Kumar, R. Aggarwal, and J. Sharma, “Energy analysis of a building
using artificial neural network: A review,” Energy & Buildings, pp. 352–
358, 2013.

[14] C. Becker, C. Julien, P. Lalanda, and F. Zambonelli, “Pervasive comput-
ing middleware: current trends and emerging challenges,” CCF Trans.
Pervasive Comput. Interact. 1, vol. 1, pp. 10–23, 2019.

[15] G. Bisicchia, S. Forti, and A. Brogi, “A Declarative Goal-oriented
Framework for Smart Environments with LPaaS,” arXiv preprint, 2021.
Available at: http://arxiv.org/abs/2106.13083.

[16] R. Calegari, E. Denti, S. Mariani, and A. Omicini, “Logic programming
as a service,” TPLP, vol. 18, no. 5-6, p. 846873, 2018.

http://arxiv.org/abs/2106.13083

	Introduction
	Methodology and Prototype
	Overview
	Model
	Reasoner

	Concluding Remarks
	References

