
A Declarative Goal-oriented Framework for
Smart Environments with LPaaS?

Giuseppe Bisicchia, Stefano Forti, and Antonio Brogi

Department of Computer Science, University of Pisa, Pisa, Italy

Abstract. Smart environments powered by the Internet of Things aim
at improving our daily lives by automatically tuning ambient parameters
(e.g. temperature, interior light) and by achieving energy savings through
self-managing cyber-physical systems. Commercial solutions, however,
only permit setting simple target goals on those parameters and do not
consider mediating conflicting goals among different users and/or system
administrators, and feature limited compatibility across different IoT
verticals. In this article, we propose a declarative framework to represent
smart environments, user-set goals and customisable mediation policies
to reconcile contrasting goals encompassing multiple IoT systems. An
open-source Prolog prototype of the framework is showcased over two
lifelike motivating examples.

Keywords: Goal-oriented systems · IoT · Logic Programming · LPaaS

1 Introduction

The Internet of Things (IoT) is continuously growing and becoming an inte-
grated part of our daily lives with a plethora of new different applications (e.g.
smart-environments, wearables, home appliances) [18,26], that show even capa-
ble of affecting our mood [14]. Among the new verticals the IoT is enabling,
smart environments are getting increasing attention from the market and the
research community [21]. Indeed, they empower private and public ambients to
self-manage cyber-physical systems (e.g. A/C, lights, plants watering) based on
data from IoT sensors, triggering reactions enabled by IoT actuators. Besides
their high potential to improve people’s routines, these applications can also lead
to a more sustainable energy and resource management.

Especially for those applications that include human goals in the self-manage-
ment loop of smart environments, the problem of reconciling contrasting goals
among different users emerges clearly [25, 31]. Colleagues sharing a room in a
public building – even for a limited amount of time – can possibly express very
different desiderata on the temperature and on the light intensity they prefer to
experience while they work. To this end, many techniques have been proposed

? Copyright © 2021 for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0). Work partly supported
by projects: GIÒ funded by the Dept. of Computer Science of the Univ. of Pisa, Italy;
CONTWARE funded by the Conference of Italian University Rectors; O. Carlini
Scholarships 2020 funded by the GARR Consortium.

to reconcile such contrasting goals set by users or system administrators, e.g.
via fuzzy logic [28], multi-agent systems [7,12] or neural networks [17]. However,
most commercial solutions, such as IFTTT [1] or Amazon Alexa [2], only allow
setting simple goals to be met by the IoT systems they manage and do not
consider the possibility of mediating among contrasting objectives [5].

Additionally, despite being deployable out-of-the-box by their final users,
existing commercial solutions show inherent limitations, mainly due to their
proprietary nature. These limitations prevent them to be extended and from
work across IoT verticals enabled by different vendors. They also make it difficult
to develop policies to mediate between users and administrator objectives, i.e.
set local and global goals. Factually, two different types of conflict can arise:

User-user – Different users can set different goals on their desired state of the
environment (e.g. on target temperature),

User-admin – The System Administrator can set global objectives that must
be met (e.g. on maximum energy consumption, on law constraints), which may
conflict with the user-set goals.

Even after reconciling the previous types of conflicts into one target state
satisfying all set (user and/or global) goals, a final configuration of the actuators
involved must also be determined. Indeed, given a final target state, we need to
(a) determine the correct configuration for each actuator acting on that state,
and (b) mediate between any conflicting configurations that a single actuator
possibly receives.

In this article, we propose1 a declarative methodology to specify customisable
mediation policies for reconciling contrasting goals and actuator settings in smart
environments. The methodology can solve contrasting goals by reasoning on the
available IoT infrastructure and on (possibly contrasting) goals set by the users
and by system administrators. The novel contribution mainly consists of:

(1) a declarative framework to specify mediation policies for reconciling contrast-
ing (user and/or global) goals and actuator settings in smart environments,

(2) a Prolog prototype implementation of (1), Solomon, provisioned as a REST
service by relying on Logic Programming-as-a-Service (LPaaS), recently pro-
posed by Calegari et al. [9] and succesfully applied to complex IoT wireless
networks [8].

Solomon tames the effects of the aforementioned types of conflict by allow-
ing to flexibly specify ad-hoc mediation policies for distinct zones of a smart-
environment and possible conflicting settings of target actuators. Such policies
can resolve conflicts (i) among users’ goals, (ii) among users’ and system ad-
ministrator’s goals, and (iii) on actuators configuration. Last, but not least,
the declarative nature of Solomon makes it easy to write, maintain and extend
arbitrary mediation policies encompassing multiple IoT verticals.

The rest of this article is organised as follows. After illustrating two motivat-
ing examples (Sect. 2), we present our methodology for goal mediation and its
prototype (Sect. 3), showcasing them over the first motivating example. The full

1 A work-in-progress and preliminary version of this study was presented in [6].

prototype is subsequently assessed over the second motivating example (Sect. 4).
Finally, we discuss some closely related work (Sect. 5) before concluding (Sect. 6).

2 Motivating Examples

In this section, we illustrate two scenarios from smart environments to better
highlight the need for reasoning solutions capable of mediating among contrast-
ing goals and encompassing different IoT verticals. Both scenarios consider two
main stakeholders:
User – a human or digital agent that can set goals on the ambient around them,
aiming at creating the most comfortable environment for them to live in,
System Administrator – a human or digital agent that can define conflict reso-
lution policies, and set global goals on the environment (e.g. on energy savings).

Smart Home – Consider a shared room in a student apartment, equipped
with three lights – the main light, a bed light and a corner light – and an A/C
system. In this case, depending on the time of day and the activity that is
taking place (e.g. studying, watching a film, reading a book), different lighting
configurations could be required. Conflicts might arise as, for instance, Alice may
want to watch a movie while Bob is still studying in the same room. Moreover,
Alice might prefer to stay in a cool room (20◦C) while Bob prefers a warmer
ambient (26◦C). Natural questions raised by the above scenario are:

– Is it possible to find a configuration of the three lights which allows Alice and
Bob to comfortably carry on their different activities?

– Is it possible to find a configuration of the A/C system which mediates among
the preferences of Bob and Alice on the environment temperature?

Fig. 1. An example of Smart Building

Smart Building – Consider now
the smart building floor sketched
in Fig. 1, consisting of a West and
an East wings. The West wing is
exposed to light most of the day
while the East wing is less illumi-
nated.

In each wing, there are 5
rooms (4 single and one shared),
the single rooms in pairs share the
air conditioning system and the
relative temperature sensor. Also,
each room has a large light and a
desk light and a brightness sensor. The shared rooms have two large lights and
their air conditioning system as well as a temperature sensor and a brightness
sensor. Besides, the first single room in the East wing ha a small heater.

Each user has been assigned a single room and has full access to shared
rooms. Furthermore, targeting sustainability, company policies require that the

temperature in the environment stays within 18◦C and 22◦C in autumn and
winter, and between 24◦C and 28◦C in spring and summer. Also in these settings,
some questions arise such as:

Q1 How to describe the available Smart Building so that it is possible to apply
ad-hoc policies for the West and East wings?

Q2 How to specify policies to manage temperature and brightness in the different
rooms of the building, handling conflicts so as to ensure the comfort of its
inhabitants and to meet sustainability policies?

Q3 After finding a target state for a specific room, how to determine suitable
settings of the available (shared and non-shared) actuators to reach it?

All questions raised above highlight the need for novel models and methodologies
to flexibly manage smart environments, such as the one we propose in this article.
In the next section, we will detail our proposal by relying on the Smart Home
example. The Smart Building example will be used instead in Sect. 4 to assess
the methodology over a larger scale scenario.

3 Methodology and Prototype

In this section, we illustrate Solomon, a declarative framework featuring au-
tonomic goal mediation in smart environments, in presence of multiple users.
Solomon is prototyped and open-sourced2 in Prolog, using LPaaS . Hereinafter,
we give an overview of the architecture we foresee for Solomon to be deployed
(Sect. 3.1), and we detail the model (Sect. 3.2) and methodology (Sect. 3.3)
underlying our framework.

3.1 Overview

Fig. 2. Bird’s-eye view of Solomon.

Fig. 2 gives a bird’s-eye view
of the architecture of Solomon.
Solomon interacts with a smart en-
vironment, consisting of IoT sen-
sors and actuators (or the services
they are wrapped in). Indeed,
Solomon periodically receives up-
dated data from the sensors de-
ployed in the smart environment,
depending on which it can trigger
suitable actions for the available
actuators.

Both users and system admin-
istrators interact with Solomon, through the LPaaS API or through available UIs.
On one hand, users can declare goals on the target state they wish to experience
while being in the smart environment. On the other hand, system administrators
can declare global mediation policies to solve user-user conflicts, to set global

2 Open-sourced and freely available at: https://github.com/di-unipi-socc/Solomon

goals and solve user-admin conflicts, and to determine actuator configurations
useful to reach a target state for the smart environment, after goal mediation.
Note that Solomon is provisioned as a service, enabled by an LPaaS engine,
which allows (i) to easily integrate it with other pieces of software such as user
interfaces (UIs) or mobile applications and (ii) to deploy it either to Cloud or
Edge servers, depending on the usage context.

3.2 Model

Smart Environment. To model smart environments, we first build up a dic-
tionary of all types of environmental parameters we can monitor (via sensors)
and/or act upon (via actuators). We call property types the elements in such a
dictionary, assuming they are declared as in

propertyType(TypeId).

where TypeId is a literal value denoting the unique property type identifier. Given
a propertyType we can then define actuators and sensors that sense or operate
on that.
Actuators are declared as in

actuator(ActuatorId, TypeId).

where ActuatorId is the unique actuator identifier and TypeId the associated prop-
erty type.
Analogously, sensors are declared as in:

sensor(SensorId, TypeId).

where SensorId is the unique sensor identifier and TypeId is the associated prop-
erty type. Environmental values monitored by each sensor are denoted by

sensorValue(SensorId, Value).

where SensorId identifies the sensor and Value is the last value it read.
Example. Based on the above, the shared room of the Smart Home example
of Sect. 2 can be declared as in

propertyType(light). propertyType(temp).
sensor(brightness, light). sensorValue(brightness, 20).
sensor(temperature, temp). sensorValue(temperature, 22).
actuator(smallLight, light). actuator(mainLight, light).
actuator(cornerLight, light). actuator(ac, temp).

where two sensors measure two different property types (i.e. temperature and
brightness), having three lamps that can act on brightness and the AC system
capable of changing the temperature. Please note that the current temperature
settles at 22◦C and the brightness at 20 out of 255. �
System administrators can divide smart environments into different zones, which
allow distinguishing which global policy to apply to specific sets of sensors and
actuators:

zone(ZoneId, MediationPolicy).

where ZoneId is the unique zone identifier and MediationPolicy is the unique
identifier of the global management policy the zone is subject to. A zone groups
one or more property instances, defining a set of actuators and a set of sensors
that operate on a specific property type. A property instance is declared as in

propertyInstance(ZId, PIId, TypeId, Actuators, Sensors).

where ZId identifies the zone to which the instance belongs, PIId is the property
instance identifier, TypeId is the propertyType of PIId, Actuators is a list of actu-
ators that operate on the property and Sensors is a list of sensors that monitor
it within the zone. All actuators and sensors in a given property instance must
have the same property type. The identifier of a property instance is unique
only within the zone, allowing for distinct zones to have instances with the same
identifier.
Example. The property instances of the Smart Home example can be described
by declaring a single livingroom zone and, for instance, four property instances
as in

zone(livingroom, _).
propertyInstance(livingroom, studyingLight, light, [cornerLight, mainLight], [brightness]).
propertyInstance(livingroom, movieLight, light, [cornerLight, smallLight], [brightness]).
propertyInstance(livingroom, readingLight, light, [smallLight], [brightness]).
propertyInstance(livingroom, roomTemp, temp, [ac], [temperature]).

It is worth noting that the first three property instances all refer to the light

property, grouping the brightness sensor with the lamps needed to realise dif-
ferent settings on such property, e.g. for studying (cornerLight and mainLight),
watching a movie (cornerLight and smallLight), or reading a book (smallLight
only). The last property instance refers instead to the temp property, grouping
to the temperature sensor and the A/C system (i.e. ac). �
Users and Goals. A user is declared as in

user(UserId, AllowedZones).

where UserId is the unique user identifier and AllowedZones is the list of the zones
on which the user can set goals. User goals are declared as in

set(UId, ZId, PIId, Value).

where UId is the user identifier, ZId identifies a zone, PIId is one of the property
instances of the zone, and Value is the goal expressed by the user on the property
instance.
Example. Still following the Smart Home scenario, Alice and Bob, and their
goals on brightness and temperature are represented as per

user(alice, [livingroom]). user(bob, [livingroom]).
set(alice, livingroom, movieLight, 20). set(bob, livingroom, studyingLight, 80).
set(alice, livingroom, roomTemp, 20). set(bob, livingroom, roomTemp, 26).

Alice aims at setting the movieLight property instance to 20 out of 255 and the
roomTemp to 20◦C. Bob, on the contrary, wants to set the studyingLight property
instance to 80 out of 255, and the roomTemp to 26◦C. �

3.3 Reasoner

The model described up to now denotes the inputs that Solomon receives from
the smart environment it manages as well as from its users. Fig. 3 lists the core
code of Solomon, which works in three main steps that constitute the top-down
methodology of the proposed framework to determine a target state for a smart
environment. Those steps are as follows:

1. it collects all user requests3 that are currently submitted to the system
(getRequests/2, line 2) and extracts only those that are valid,

2. it mediates requests referring to the same property instance by applying the
mediation policies specified by the system administrator, so to determine a
target state for each property instance (mediateRequests/2, line 3) by solving
all user-user and user-admin conflicts,

3. it finally determines actions (i.e. settings) for individual IoT actuators so to
achieve the target state, by also resolving possible conflicting actions found
for a single actuator (associateActions/2, line 4).

1 react(Requests, MediatedRequests, Actions) :-
2 getRequests(Requests, ValidRequests),
3 mediateRequests(ValidRequests, MediatedRequests), validMediation(MediatedRequests),
4 associateActions(MediatedRequests, Actions), validActions(Actions).

5 getRequests(Requests, ValidRequests) :-
6 findall((ZId, PIId, Value, UId), set(UId, ZId, PIId, Value), Requests),
7 findall((ZId, PIId, Value, UId),
8 (member((ZId, PIId, Value, UId), Requests), user(UId, Zones), member(ZId ,Zones),
9 validRequest(ZId, PIId, Value)), ValidRequests).

10 validMediation(Reqs) :-
11 sort(Reqs, OrderedReqs),
12 \+((member((Z,PI,V1), OrderedReqs), member((Z,PI,V2), OrderedReqs), dif(V1,V2))),
13 \+((member((Z,PI,V), OrderedReqs), \+(validRequest(Z,PI,V)))).

14 validActions(Actions) :-
15 sort(Actions, OrderedActions),
16 \+((member((A,V1), OrderedActions), member((A,V2), OrderedActions), dif(V1,V2))),
17 \+((member((A,V), OrderedActions), \+(validValue(A,V)))).

Fig. 3. Solomon code.

Overall, the react/3 predicate (line 1) returns three lists: the list of all
Requests, the list of MediatedRequests containing the target states for each prop-
erty instance and the list of Actions to perform to reach a final target state. It is
worth noting that, while the framework leaves complete flexibility to the system
administrators in defining their own mediation policies, it also checks that inputs
and outputs of each phase are well-formed (through predicates validMediation/1,
line 3, and validActions/1, line 4). This guides the system administrators in their
task of writing (formally) valid mediation policies.

3 findall(Template, Goal, Result) finds all successful solutions of Goal and col-
lects the corresponding instantiations of Template in the list Result. If Goal has no
solutions then Result is instantiated to the empty list.

Collecting Requests. First, Solomon collects all the requests through getRequests/2

(line 2, lines 5–9), which determines two lists of tuples (ZId, PIId, Value, UId),
where each tuple corresponds to a set(UId, ZId, PIId, Value) with arguments
rearranged for easier handling in later stages. The first list Requests contains all
current requests from users (line 6). The second one, ValidRequests, only contains
valid requests (line 7–9), i.e. by default4, requests for which the zone and the
property instance exist, and the zone is among those the user associated with
the request can set goals on.
Example. In the Smart Home scenario, querying

?- getRequests(Requests, ValidRequests).

returns the following:

Requests = ValidRequests,
ValidRequests = [(livingroom, movieLight, 20, alice), (livingroom, studyingLight, 80, bob),

(livingroom, roomTemp, 20, alice), (livingroom, roomTemp, 26, bob)].

collecting all requests from Alice and Bob. �
Mediating Requests. Valid requests are then passed to the mediateRequest/3 pred-
icate (line 3) which can be flexibly and freely specified by the system adminis-
trator. The objective of this phase is to mediate between the possible conflicting
goals of the users by determining one target value for each property instance.
The mediateRequests/2 predicate outputs a list, MediatedRequests, of such values
for each property instance, in the form of triples (ZoneId, PropertyInstanceId,

Value). Then, the validMediation/1 predicate (lines 3, 10–13) checks that the
list contains no duplicates (line 12) and that all requests are still valid after
mediation (line 13).
Example. In our Smart Home scenario, a possible mediateRequests/2 that simply
averages user requests for a same property instance is as follows:

mediateRequests(Requests, Mediated) :-
groupPerPI(Requests, NewRequests),
mediateRequest(NewRequests, Mediated).

mediateRequest([],[]).
mediateRequest([(Z,PI,Rs)|Reqs], [Mediated|OtherMedReqs]) :-

mediatePI(Z,PI,Rs,Mediated),
mediateRequest(Reqs, OtherMedReqs).

mediatePI(Z, PI, Ls, (Z, PI, Avg)) :-
findall(V, member((V,_),Ls), Values), avg(Values,Avg).

Input Requests are first grouped per property instance by groupPerPI/2, which
returns a list of triples (Z,PI,Rs) where Z and PI identify a property instance
and Rs is the list of requests that target it. By recursively scanning such list,
mediateRequest/2 exploits mediatePI/4 to average all requests grouped for each
property instance.
By querying mediateRequests/4, we obtain

4 System administrators can easily extend the concept of valid request by including
further checks based on domain-specific knowledge, e.g. on the range of allowed
values for a given property. This can be done by extending the validRequest/3
predicate exploited by getRequests/2 (line 9).

Mediated = [(livingroom,movieLight,20), (livingroom,roomTemp,23), (livingroom,studyingLight,80)].

which represents a target state where movieLight and studyingLight are set to 20
and 80 respectively, and roomTemp to 23◦C, i.e. the average of Bob and Alice’s
goals. �
Determining Actions. After obtaining a target state for each property instance,
Solomon generates a list of actions for available actuators to reach such a target.
An action is a pair (AId, Value) where AId is the identifier of an actuator and
Value is the value it needs to be set to. The associatedActions/2 predicate (line
4) inputs a list of mediated requests and returns a list of actions, according to
System Administrator policies.

The validActions/1 predicate (lines 4, 14–17) checks whether there are no
duplicate settings (line 16) and that obtained values are valid according to Sys-
tem Administrator policies (line 17), which can check if the configuration for an
actuator can factually be implemented, using validValue/2.

Example. A simple policy that computes the setting for each actuator by di-
viding the target value of a propertyInstance by the number of its actuators, is
specified as in

associateActions(Requests, ExecutableActions) :-
actionsFor(Requests, Actions),
setActuators(Actions, ExecutableActions).

actionsFor([],[]).
actionsFor([(Z, PI, V)|Reqs], Actions) :-

propertyInstance(Z, PI, _, Actuators, _),
selectActionsForPI(Z, PI, V, Actuators, _, Actions1),
actionsFor(Reqs, Actions2),
append(Actions1, Actions2, Actions).

selectActionsForPI(_, _, V, Actuators, _, Actions) :-
length(Actuators, L),triggerAll(V, L, Actuators, Actions).

triggerAll(_, _, [], []).
triggerAll(V, L, [A|Actuators], [(A,VNew)|Actions]) :-

VNew is V/L, triggerAll(V, L, Actuators, Actions).

setActuators(Actions, ExecutableActions) :-
setActuatorsWithMax(Actions, 0, 100, ExecutableActions).

First, for each input requests, a triple (Zone, PropertyInstance, TargetValue),
actionsFor/2 gets the list of actuators of that specific propertyInstance. Then, it
selectActionsForPI/6 computes the list of actions to be performed by dividing the
target value for each propertyInstance by the number of its actuators. Note that
when an actuator belongs to more than one propertyInstances, setActuators/2

selects the highest value available cutting that value with a lower bound of 0
and an upper bound of 100.

By querying associateActions/2 in the Smart Home scenario, given the target
state of the previous example, we obtain:

?- associateActions(Mediated, Actions).
Actions = [(ac, 23), (cornerLight, 40), (mainLight, 40), (smallLight, 10)]

Note that the ac actuator is set to 23◦C, i.e. the value of the target state.
As for movieLight and studyingLight, being composed of several actuators, a
further mediation happens. The target value of 20 for movieLight is split across
cornerLight and smallLight, setting each to 10. Analogously, the target value of
80 for the studyingLight is split across mainLight and cornerLight, setting each to
40. The conflict on cornerLight, being in both property instances, is solved by
picking the maximum between 10 and 40, viz. 40. �

4 Smart Building Example Retaken

In this section, we exploit Solomon to answer the questions raised about the
Smart Building scenario of Sect. 2. The answer to Q1 is obtained by specifying
different zone(ZoneId, MediationPolicy) facts for the rooms in the smart building
(Fig. 1), as in

zone(room_E_1, east). zone(room_W_1, west). zone(room_E_2, east). zone(room_W_2, west).
zone(room_E_3, east). zone(room_W_3, west). zone(room_E_4, east). zone(room_W_4, west).
zone(commonRoom_E, east). zone(commonRoom_W, west).

The east and west literals identify two different mediation policies, specified by
System Administrator , to be applied to the property instances grouped under the
zone. Such grouping can be obtained by specifying suitable propertyInstance(ZId,

PIId, TypeId, Actuators, Sensors) facts as, for instance, in

propertyInstance(room_E_1,roomTemp,temp,[acOdd_E,heater],[tempOdd_E]).
propertyInstance(room_E_1,roomLight,light,[biglightRoom_E_1,smalllightRoom_E_1], [lightRoom_E_1]).
propertyInstance(room_E_3,roomTemp,temp,[acOdd_E],[tempOdd_E]).
propertyInstance(room_E_3,roomLight,light,[biglightRoom_E_3,smalllightRoom_E_3],[lightRoom_E_3]).

that describes the sensors and actuators available in the Room 1 and Room 3 of
the East wing. Note that the two rooms share the acOdd E actuator for the A/C
system and that Room 1 contains the heater actuator that is not available in
Room 3.

Based on the knowledge representation above, we can now answer Q2 by
suitable implementations of mediateRequests/2. Indeed, the System Administrator
can easily declare mediation policies to solve user-user and user-admin conflicts
in a context-aware manner. Such behaviour can be obtained through predicate
mediatePI/4 (which is used by mediateRequests/2 as illustrated in Sect. 3) :

mediatePI(Z, PI, Ls, (Z, PI, Avg)) :-
findall(V, member((V,_),Ls), Values),
avg(Values,AvgTmp),
zone(Z, MediationPolicy),
propertyInstance(Z, PI, Prop, _, [Sensor]),
sensorValue(Sensor, SensedValue),
findValue(Policy, Prop, SensedValue, AvgTmp, Avg).

First mediatePI/4 averages all user requests for a specific propertyInstance so
to mediate possible user-user conflicts. Then, it exploit findValue/4 to mediate
between the obtained average with the global policy enforce by the System Ad-
ministrator . Such mediation is based on the MediationPolicy of the wing (i.e.

east, west), on the property type Prop (i.e. light, temp) on the value obtained by
the sensor of that instance (i.e. SensedValue) and on the computed average value
AvgTmp.

Fig. 4 lists the code of predicate findValue/4. The first clause of findValue/4

(lines 1–4), manages the temperature in both wings in the same way. After
determining the current season (line 2), it enforces that the target value is within
the season-dependent ranges specified for sustainability purposes (line 3–4), viz.
18–22◦C in Winter and Autumn and 28–24◦C in Summer and Spring. The second
and the third clauses of findValue/4 (lines 5–6 and 7–9) manage instead the
environmental brightness, depending on the wing of the room, on the current
brightness and the weather. This process determines a mediated target state
that reconciles all user-user and user-admin conflicts on each property instance,
which fully answers Q2.

1 findValue(_, temp, _, SVal, Value) :-
2 season(S),
3 (((S = winter ; S = autumn), (SVal > 22, Value is 22; SVal < 18, Value is 18; Value is SVal));
4 ((S = summer ; S = spring), (SVal > 28, Value is 28; SVal < 24, Value is 24; Value is SVal))).

5 findValue(east, light, _, SVal, Value) :-
6 (SVal > 255, Value is 255; SVal < 100, Value is 100; Value is SVal).

7 findValue(west, light, Brightness, SVal, Value) :-
8 ((Brightness > 100, (SVal > 255, Value is 255; SVal < 100, Value is 100; Value is SVal));
9 (SVal > 255, Value is 255; SVal < 180, Value is 180; Value is SVal)).

Fig. 4. findValue/4 implements global policies in the Smart Building.

Finally, the answer to Q3 is achieved through the implementation of the
associateActions/2 predicate. In our Smart Building, the policy we chose to adopt
consists of dividing the workload equally between the various actuators, with
the only exception of the heater that only accepts two values, viz. 0 or 100. The
code is similar to the one proposed in the previous section for the Smart Home,
in which the selectActionsForPI/6 is adapted to the new policy and in case of
multiple requests to the same actuator, now the maximum value is chosen.

selectActionsForPI(_, _, V, Actuators, _, Actions):-
length(Actuators, L),triggerAll(V, L, Actuators, Actions).

triggerAll(_, _, [], []).
triggerAll(V, L, [A|Actuators], [(A,VNew)|Actions]):-

dif(A, heater),
VNew is V/L, triggerAll(V, L, Actuators, Actions).

triggerAll(V, L, [heater|Actuators], [(heater,100)|Actions]):-
V > 0, triggerAll(V, L, Actuators, Actions).

triggerAll(V, L, [heater|Actuators], [(heater,0)|Actions]):-
V =< 0, triggerAll(V, L, Actuators, Actions).

setActuators(Actions, ExecutableActions) :-
setActuatorsWithMin(Actions, -inf,inf, ExecutableActions).

First selectActionsForPI/6 computes the number L of actuators of the propertyIn-

stance, then triggerAll/4 is called which distributes the workload to the actua-
tors with the exception of the heater. Finally, setActuators choose the maximum

in case of multiple sets for a specific actuator (with no lower or upper bound).
With this process we can determine the correct configuration for each actuator
acting on that state, and mediate between any conflicting configurations that a
single actuator possibly receives, answering to Q3.

We conclude this section by describing a use case for the scenario above
exploiting the policies described. Suppose that it is a sunny day in winter, with
the brightness value sensed in the West common room at 160 out of 255, and
user u1 sets the brightness of her room to 0 and the temperature to 18◦C. On
the contrary, user 3 sets the temperature at 28◦. Assume that the two rooms
share the A/C system but not the lighting system. Meanwhile, user u4 sets the
temperature and brightness of room2, which she is not authorised to handle.
Finally, users u2 and u8 are both in the commonRoom E with the same goal for the
light but different goals for the temperature (respectively 23◦C and 18◦C).

season(winter). sensorValue(lightCommonRoom_W, 160).
user(u1, [room_E_1,commonRoom_E,commonRoom_W]). user(u2, [room_E_2,commonRoom_E,commonRoom_W]).
user(u3, [room_E_3,commonRoom_E,commonRoom_W]). user(u4, [room_E_4,commonRoom_E,commonRoom_W]).
user(u8, [room_W_4,commonRoom_E,commonRoom_W]).
set(u1, room_E_1, roomLight, 0). set(u2, commonRoom_W, commonRoomLight, 255).
set(u1, room_E_1, roomTemp, 18). set(u2, commonRoom_W, commonRoomTemp, 23).
set(u3, room_E_3, roomTemp, 28). set(u8, commonRoom_W, commonRoomLight, 255).
set(u4, room_E_2, roomLight, 0). set(u8, commonRoom_W, commonRoomTemp, 18).
set(u4, room_E_2, roomTemp, 18).

For each room the result of the mediation phase with the application of global
policies described before is:

[(room_E_1,roomLight,100), (room_E_1,roomTemp,18), (room_E_3,roomTemp,22),
(commonRoom_W,commonRoomLight,255), (commonRoom_W,commonRoomTemp,20.5)]

where roomLight of room E 1 is bounded on 100 because it is the minimum bound
for the light in the East wing, while the roomTemp is within the bounds. Meanwhile,
roomTemp of room E 3 is bounded to 22 the maximum temperature allowed in
winter. Instead in commonRoom W the temperature is the average of the two requests
because it is within the boundaries and also the light because we are in the West
wing and it is sunny (brightness > 100) so the maximum bound is 255, the goal
of both users. Finally, the goals of user u4 are ignored because is not authorised
to interact with room E 2. Then, the actions to be carried out, given the states
computed, will be:

[(acCommonRoom_W, 20.5), (biglightCommonRoom_W_1, 127.5),(biglightCommonRoom_W_2, 127.5),
(acOdd_E, 22), (heater, 100), (biglightRoom_E_1, 50), (smalllightRoom_E_1, 50)]

where the temperature of commonRoom W is managed only by acCommonRoom W and the
light is implemented by two main light which equally divide the goal. Meanwhile,
acOdd E is the air conditioning system shared by room 1 and 3 and is setted to
the maximum of the two goals (18 and 22) and also in room E 1 the heater is
working. Finally, the small and big light work together to implement the goal.

5 Related Work

In this section, we discuss some closely related work on the self-management of
smart environments. Most of these works fall within three main categories, viz.
goal-oriented [23], hierarchical [15], and neural and fuzzy [22].

First, [3,29,32,33] and [30] propose goal-oriented approaches to conflict me-
diation. Targeting global goals like energy efficiency, users comfort, and system
security, [3] presents a solution to manage smart buildings by adding a semantic
layer on top of the stack of IoT devices for reaching the desired global goals,
exploiting an ontology of goal types. With a more formal approach, [29] devise
a methodology for autonomic device management describing the evolution of a
smart environment as the set of evolutions of single device states, modelled as
command sequences. Given a global goal, this solution determines the correct
sequence of commands to reach it. Besides, [33] proposes an access control mech-
anism exploiting a priority-based policy negotiation technique to solve user-user
conflicts in a smart home, made of multiple devices. Finally, Tartarus [30], is a
Prolog platform designed to integrate cyber-physical systems and robots, sup-
porting mobility, cloning, and payload carrying. More in general, [32] propose a
solution for the problem of conflicts resolution in a multi-agent system, through
argumentation-based reasoning. Similarly, [13] propose a multi-agent framework
to contextually compose existing web services in Smart Envirnoments via rea-
soning and learning. As per its goal-oriented nature, Solomon enables system
administrators to write customised policies that can accommodate sophisticated
and expressive mediation policies exploiting for example the semantic ontology
of [3] or the negotiation technique of [33].

Second, hierarchical solutions for goal mediation have been proposed by [15]
and [20]. Dynamic hierarchical goal management for different IoT systems is dis-
cussed in [15], considering conflicting local and global goals, and the availability
of limited resources that can vary at runtime. Regarding security in smart en-
vironments and in particular Smart Offices, [20] propose a hierarchical, agent-
based solution that considers the high number of potential users, their security
roles and the heterogeneity of devices and spaces. An interesting extension to
Solomon is to include hierarchical approaches to solve goals and to consider se-
curity aspects as well.

Third, and last, fuzzy logic [10,24,28] and neural network [4,17] approaches
to goal mediation have been studied recently, along with their combination [16].
Fuzzy logic can be used for context-awareness in Smart Home as illustrated
in [24], where raw data from the sensors are processed to manages actuators
according to the computed context based on the user movement and activity.
The works in [10,28] propose expert systems to control the A/C of smart build-
ings, based on the current status of the sensors and the outside temperature.
Similarly, [16] manages A/C systems through a neuro-fuzzy controller where an
adaptive neural network is used to better tuning the fuzzy rules, making them
more robust. Neural networks have also been successfully used to predict energy
consumption more reliably than traditional techniques [17] and for indoor tem-
perature forecasting [4]. As Prolog is well-suited to implement fuzzy logic [27], an

interesting extension of Solomon is to accommodate fuzzy controllers. Similarly,
predictions based on neural networks can be made available in the knowledge
base of Solomon from external services or by relying on recent implementations
of Prolog that support neural networks (e.g. DeepProbLog [19]).

6 Concluding Remarks
This article proposed a declarative framework – and its Prolog prototype Solomon–
to specify policies for mediating contrasting (user and/or global) goals and ac-
tuator settings in smart environments. The prototype is provisioned as a service
through LPaaS , and it can resolve user-user and user-admin conflicts into a
target state for the smart environment with actuator settings.

The wide variety of smart environments and the desiderata of their users and
system administrators calls for new frameworks to easily develop and continu-
ously adapt domain-specific mediation policies. This work moves some first steps
towards this direction, aiming at contributing a novel declarative approach, en-
abled by LPaaS , to the field of goal-driven management of smart environments.
As showcased in our example, thanks to its declarative nature, Solomon features
a suitable level of abstraction and flexibility to accommodate different needs of
smart environments, making it easy to express, maintain and update mediation
policies as per the ever-changing needs of IoT scenarios.

In our future work, we intend to:
– New Policies and Data. Implement other mediation policies (e.g. based on

fuzzy logic, learning or heuristics), by also proposing a set of building blocks
that System Administrators can use to compose their own policies, and by
enabling users’ geolocalisation to predict movements and preferences.

– Answer Set Programming. Extend Solomon’s API to support Answer Set
Programming (ASP) as in [11] so to allow processing more expressive policies.

– Web of Things. Integrate Solomon with Web of Things to make it more
interoperable and easier to exploit in existing smart environments.

References

1. IFTTT: If This Then That. https://ifttt.com/
2. Amazon: What Is Alexa? https://developer.amazon.com/en-US/alexa
3. Andrushevich, A., et al.: Towards semantic buildings: Goal-driven approach for

building automation service allocation and control. In: ETFA 2010. pp. 1–6 (2010)
4. Attoue, N., et al.: Smart building: Use of the artificial neural network approach for

indoor temperature forecasting. Energies 11(2), 395 (2018)
5. Becker, C., et al.: Pervasive computing middleware: current trends and emerging

challenges. CCF Trans. Pervasive Comput. Interact. 1 1, 10–23 (2019)
6. Bisicchia, G., Forti, S., Brogi, A.: Declarative goal mediation in smart environ-

ments. In: SMARTCOMP, Work in Progress Track (2021)
7. Booy, D., Liu, K., Qiao, B., Guy, C.: A Semiotic Multi-Agent System for Intelligent

Building Control. AMBI-SYS (2008)
8. Calegari, R., Denti, E., Mariani, S., Omicini, A.: Logic Programming as a Service

(LPaaS): Intelligence for the IoT. In: ICNSC. pp. 72–77 (2017)
9. Calegari, R., Denti, E., Mariani, S., Omicini, A.: Logic programming as a service.

Theory and Pract. Log. Program. 18(5-6), 846873 (2018)

10. Calvino, F., et al.: The control of indoor thermal comfort conditions: introducing
a fuzzy adaptive controller. Energy & Buildings 36(2), 97 – 102 (2004)

11. Catalano, G., et al.: A rest-based development framework for ASP: tools and ap-
plication. In: PADL 2018. LNCS, vol. 10702, pp. 161–169. Springer (2018)

12. Davidsson, P., Boman, M.: Saving Energy and Providing Value Added Services in
Intelligent Buildings: A MAS Approach. In: ASA/MA. pp. 166–177 (2000)

13. Ferilli, S., et al.: An agent architecture for adaptive supervision and control of
smart environments. In: 2015 International Conference on Pervasive and Embedded
Computing and Communication Systems (PECCS). pp. 1–8 (2015)

14. Gyrard, A., Sheth, A.: IAMHAPPY: Towards an IoT knowledge-based cross-
domain well-being recommendation system for everyday happiness. Smart Health
15, 100083 (2020)

15. Jantsch et al., A.: Hierarchical dynamic goal management for IoT systems. In:
ISQED. pp. 370–375 (2018)

16. Jian, W., Wenjian, C.: Development of an adaptive neuro-fuzzy method for supply
air pressure control in HVAC system. In: SMC. pp. 3806–3809 (2000)

17. Kumar, R., Aggarwal, R., Sharma, J.: Energy analysis of a building using artificial
neural network: A review. Energy & Buildings pp. 352–358 (2013)

18. Lee, S.K., Bae, M., Kim, H.: Future of IoT Networks: A Survey. Applied Sciences
7 (2017)

19. Manhaeve, R., Dumancic, S., Kimmig, A., Demeester, T., Raedt, L.D.: Deep-
ProbLog: Neural Probabilistic Logic Programming. arXiv 1907.08194 (2019)

20. Marsá-Maestre, I., De La Hoz, E., Alarcos, B., Velasco, J.R.: A Hierarchical, Agent-
based Approach to Security in Smart Offices. In: ICUC (2006)

21. Merabti, S., Draoui, B., Bounaama, F.: A review of control systems for energy and
comfort management in buildings. In: ICMIC. pp. 478–486 (2016)

22. Naji, S., et al.: Application of adaptive neuro-fuzzy methodology for estimating
building energy consumption. Renew. and Sustain. En. Reviews 53, 1520–1528
(2016)

23. Palanca, J., et al.: Designing a goal-oriented smart-home environment. Inf. Syst.
Frontiers 20(1), 125–142 (2018)

24. Patel, A., Champaneria, T.A.: Fuzzy logic based algorithm for Context Awareness
in IoT for Smart home environment. In: TENCON. pp. 1057–1060 (2016)

25. Perumal, T., et al.: Rule-based conflict resolution framework for Internet of Things
device management in smart home environment. In: GCC. pp. 1–2 (2016)

26. Perwej, Y., AbouGhaly, M.A., Kerim, B., Harb, H.A.M.: An extended review on
internet of things (iot) and its promising applications. CAE pp. 2394–4714 (2019)

27. Rubio-Manzano, C., Iranzo, P.J.: A Fuzzy Linguistic Prolog and its Applications.
J. Intell. Fuzzy Syst. 26(3)(3), 1503–1516 (2014)

28. Salih, A.: Fuzzy Expert Systems to Control the Heating, Ventilating and Air Con-
ditioning (HVAC) Systems. IJERT 4 (2015)

29. Sanaullah, M., Corno, F., Razzak, F.: Autonomic goal-oriented device management
for Smart Environments. J. Ambient Intell. Smart Environ. 7(4), 425–448 (2015)

30. Semwal, T., et al.: Tartarus: a multi-agent platform for integrating cyber-physical
systems and robots. In: AIR. pp. 20:1–20:6. ACM (2015)

31. Sfar, H., Raddaoui, B., Bouzeghoub, A.: Reasoning Under Conflicts in Smart En-
vironment. In: ICONIP (3). pp. 924–934 (2017)

32. Shams, Z., et al.: Argumentation-Based Reasoning about Plans, Maintenance
Goals, and Norms. ACM Trans. Auton. Adapt. Syst. 14(3), 9:1–9:39 (2020)

33. Sikder, A.K., et al.: Kratos: Multi-User Multi-Device-Aware Access Control System
for the Smart Home. p. 112. WiSec ’20 (2020)

